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: 
SUMMARY 

A computer technique which calculates a least-squares fit monoisotopic mass 
spectrum, restficted-to positive solutions, from polyisotopic measurements, is describ- 
ed Any combination of elements, sets of isotopes or isotopic abundances can be 
handled. Partial or complete spectra may be analyzed The method is also useful to 
determine the fractional abundance of isotopes, calculate the cluster of isotope peaks 
due to any formula, handle the data from ion-molecule studies, and detect impurities 
in mass spectral data. As examples the mass spectra of (CH,),Hg, (CH,),Pb, SiC14 
and SOCll are resolved. 

INTRODUCTION 

When one uses mass spectroscopy to analyze compounds containing highly 
polyisotopic elements, the resulting spectra are complex and it may be difficult to 
discover the formulas of the ions present and the intensity of each of these formulas. 
This is the case for bromine, chlorine and sulfur derivatives, as well as for boron and 
silicon compounds. But the most widespread area of application is found among the 
organometallics and other metal derivatives. The 10 naturally-occurring isotopes of 
tin, for example, are spread over 13 mass units. Cadmium isotopes occupy 11 masses. 
Mercury, platinum and molybdenum atoms range over 9 mass units. Zinc, iron, 
chromium, nickel, tungsten and lead isotopes are distributed over five or more mass 
units. 

Monoisotopic mass spectra.may be calculated manually, of course. A typical 
method begins with the intensity of the peak which occurs at the lowest mass. For the 
sake of simplicity we assume that this peak contains only the lightest isotope of each 
element. From statistical considerations which are discussed later, one can calculate 
the abundance of every ion with the same elemental formula, but heavier because of the 
presence of one or more heavier isotopes. These calculated intensities are then sub- 
tracted from the experimental measurements at the appropriate masses. In this way 
one removes from rhe experimental data the effect of the presence of ions with the 
formula in question,, but containing heavier isotopes. The residual intensity at the 
second lowest experimental &ass is now due to an ion containing only the lightest 

* To whom correspondence should be addressed. 
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isotopes and one m&e hydrogen than the peak at the lowest mass. The procedure can 
be repeated until the effect of the presence of heavier isotopes in every formula is 
remoired. 

These computations are complicated and tedious. In fact, weenever the lowest 
‘or Qhest peak in the experimental spectrum is not monoisotopic, this straight- 
forward. method is n&t possible. But even if this conventional methdd is automatically 
peiformed by a computer, it is not satisfactory. Errors or inaccuracies which occur 
early in the procedure are cumulative. Because of the consecutive nature of the dcula- 
tions, special weight is put on the measurements at lower masses. A third drawback is 
that one often cannot use all of the information available to generate the monoisotopic 
intensities. There are usually more polyisotopic abundances than monoisotopic 
intensities to be determined, and the above procedure does not take advantage of this 
fact. Finally, the results of the conventional technique are often unsatisfactory because 
of the presence of negative intensites among the calculated monoisotopic abundances. 
These negative abundances almost necessarily arise during the subtractions described 
above. They-may be due to mismeasurements, the presence of impurities, the use of 
incorrect formulas or incorrect fractional abundances for the isotopes, as well as other 
reasonsl*‘. The conventional method for calculating monoisotoplc mass spectra 
provides no objective procedure to be followed when these negative intensities arise. 

Another procedure for calculating monoisotopic mass spectra avoids these 
pitfalls. It is a matrix method which solves for all the monoisotopic intensities simul- 
taneously. This avoids error accumulations and the need for iterative calculations. 
All the available measurements are used to establish least-squares fit monoisotopic 
abundances. The monoisotopic intensities may be restricted to non-negative values 
easily. This automatic computer matrix method will be described. 

METHOD 

In the mass spectrum of a polyisotopic sample, the measured ion intensity at 
any mass, Pi, is the sum of the contributions of the different ionic formulas which have 
one or more isotopic variant at that mass, Pij- These contributions may be expressed 
in terms of the intensity of the monoisotopic ion with the same elemental formula, mj, 
as in eqn. (1). 

pi=CPij=C(rij-mj) i. i (1) 
The matrix bf coeff&ients, Tij, can be evaluated from statistical considerations. The 
probability or fractional abundance, a, of the occurrence of any one configuration of 
isotopes with n atoms of an element which has m different isotopes, can be calculated 
from the multinomial distribution given in eqn. (2)3. The gross fraction of each isotope 
in the sample is defined asfi, and ni atoms of each isotope occur in the configuration. 

a=n! -fl’-fl’- . ..f~/(n.!*n,!~- _.. n,!) 

If there are only two isotopes, this reduces to the more familiar binomial distri- 
bution, and the ratios of the factorials become binomial coeflicients. Since one is not 
directly -concerned with the probability of a cotiguration, but with its probability 
relati& to the occurrence of the monoisotopic form, r, we must divide the abundance 
of -the configuration by the abundance of. the monoisotopic variant with the same 
elemental form& uO, as in eqn. (3). 
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r = a/a0 (3) 

When several elements are present in the ion, a further complication arises. 
The pertinent relative abundance for the multielement ion is the compound relative 
abundance, r,. This is the product of the relative abundances for each element, as in 
eqn. (4). 

r, = ra-rb- ___ (4) 

The relative probabilities are multiplied because the variation of isotopes in one ele- 
ment is independent of the occurrence of isotopes in the other elements4*3. A second 
complication occurs when several isotopic variants of the multielement ion are found 
at the same mass. If the first variant has a relative abundance r. the second r’, and so 
forth, then the total relative abundance of formulai at mass i, rij, is the sum of all of 
the appropriate compound abundances, eqn. (5). 

rii= r,+rL+ .__ (5) 

In this case the respective probabilities are interdependent or mutually exclusive, as 
statisticians put it5. 

Au example of the use of these formulas is presented iu Table 1. The twelve 
isotopic variants of the ion CINCl occur at six different masses, 73 to 78. Each configu- 
ration of isotopes is described by a different set of the integers, k, 1, m, n, o, and p_ 
They represent the number of atoms of the isotopes 1 %, 13C, 14N, 15N, 35Cl, and 37CI 
respectively. In the table the lightest isotope of each element has been chosen as the 
monoisotopic reference. A number calculated by the use of eqns. (2) and (3) occurs in 
Table 1 in the row labelled mass 78 under the column heading r(C,). The abundance of 
13C2 is reported there as 1.2599 x 10e4. This was calculated by using eqn. (2) for 13C2 
(n=2,n1=0,n,=2),audalsofor ’ 2C, (n = 2, n 1 = 2, n, = 0) using the natural abundance 
of 12C and 13C (l.ll”/O). Then the former number was divided by the latter according 
to eqn. (3). Use of eqn. (4) is illustrated in the same row of the table, mass 78. The rela- 
tive abundance of 13C2 15N3’Cl is listed under the columu heading r(C,NCl) as 
1.5159 x 10m7. It is the product of the relative abundance of 13C2, 1.2599 x 10m4, of 
“N 3 7137 x 10m3, and of 37Cl, 3.2398 x 
tud &lculated from eqns. (2) aud (3) iu 

lo- ‘. Each of these three numbers were in 
th e manner described above. Finally, eqn. (5) 

is exemplified by the two rows labelled mass 77 in Table 1. In the first row marked 77, 
the relative abundance of r2C13C15N37Cl is calculated as 2.7010 x lo-‘. In the second 
row 77, the relative abufidance of 13C, 14N37Cl is reported as 4.04818 x 10e5. The 
relative abundance of all isotopic variants of &NC1 which occur at mass 77 is the sum 
of these two abundances, or 6.7828 x lo-‘. 

The ultimate result of the calculations for the ion C2NCl are the six numbers 
listed in the column of the table marked ri> When these numbers are multiplied by the 
monoisotopic intensity of C,NCl, we obtain the polyisotopic contributions of this 
ion at the six different masses at which it occurs. 

In the second stage of the procedure to generate monoisotopic mass spectral 
intensities, one must solve the simultaneous equations (l), whose coefficients we have 
just calculated_ There is one equation for each experimental intensity measured, and 
one unknown for each monoisotopic formula. A least-squares matrix technique which 
avoids the usual difficulties has been described in a recent complication of the mono- 
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isotopic ~mar;S sp&& -of -the .bor&es’. -The ba&program%rsed, called MIMS, or 
-Mono Isotopic’Mass Spectra;‘is a drastic revision and generalization of the previously- 
published programs for&oranes and boron derivatives. -The power. and accuracy of 
the general technique has been amply demon&&d with the boraries. It provided a 

.fit-.abqut..twenty-five times aS good-as the conventional method for the boranes’; 

APPLICATIONS AND. EXAMPLES 

As the computer program, MIMS, is now set up, it can handle up to 10 different 
elements in any one mass spectrum_ Each element can have isotopes which extend over 

TABLE 2 

THE MONOISOTOPiC MASS SPECTRUM OF TETRAMETHYLLEAD 

MtlSS Formula Intensity 

208 
209 
220 
221 
222 
223 
224 
232 
233 
235 
237 
238 
239 
252 
253 
254 

Pb 43.97 
PbH 5.77 
PbC 0.85 
PbCH 2.78 
PbCHz 6.13 
PbCH, 85.28 
PbCH, 0.37 
PbCz 0.04 
PbQH 0.13 
Pb&H, 0.05 
PbC,H, 0.56 
PbC,H, 24.82 
PbC,H, 024 
PbC,H, 1.11 
PbC,H, 100.00 
FbCsH,, 0.22 
RMD 0.030 

TABLE 3 

THE MONOISOTOPIC MASS SPECTRUM OF DIMETHYL MERCURY 

MaS.5 

202 
203 
214 
215 
216 
217 
218 
219 
229 
230 
231 
232 

Formula 

Hg 
HgH 
HgC 
HgCH 
HgCHz 
HgCH, 
HgCH4 
HgCHei 
HgCzH3 
HgCzH4 
HgC,Hs 
HgC2Hs 
RMD 

Intensity 

41.99 
4.81 
2.75 
6.11 

14.03 
100.00 

0.13 
0.06 
0.20 
0.59 
0.73 

- i 49.73 
0.071 



.-13 &a& u&s;ThG k.sti~erjt for &&I the most polyisotop~~~elements,-tin &d xehok. 
Anj i~otoperk$ b&signated as the mbnckotopic intensity, but. generally the inost 
zburidark isotdpe is cho&aA ~quanti&ive.ni&ure of.t& fit of the least-squark 
solution, the roo&rneanrsquare deviation, is automa$zally calculated. The polyisoto- 
pit s~trum mai be handled cdmpletely, or truncated in any fashion. The solution is 

-completely accurate in the range dekignakd if all of the-appropriate formula&can be 
included-This feature k-especially helpful ifa computer with small storage is available. 
The Iargest.demand on c&e results from the matrix of coeflkiefits of eqn. (1) which has 
the dimensions _Ntimber of polyisotopic measurements x.Number of monoisotopic 
formulas. Truncation allows one to factor the spectrum into several small problems. 
The program f&Hg(CH,), in Table 3 occupied less than 40 K bytes on an IBM 360 
Model 40. (i.e. 10 K- variables).. 

Some examples of the results of MIMS are listed-in the accompanying tables 
and figures. Tetramethpllead and dimethyjmercury were chosen to illustrate the use 
of the program with elements which have many isotopes6. The compounds SiCl, and 
SOClz exemplify its application to sulfur, the halogens and silicon’. 

The input needed for the program consists of the fractional abundance of the 
isotopes of the elements pres‘ent, the experimental spectrum and a set of formulas_ 
If there is any uncertainty about the formulas of the ions present, all may be tried and 
l &e best-fitting set chosen by comparison of the root-mean-square deviation, RMD, 
for each set. Naturally, if the abundance of a second isotope is small, as for the elements 
hydrogen, carbori and oxygen, this procedure may be unreliable. A parent-mass-plus- 

TABLE 4 

THE EXPERIMENTAL POLYISOTOPIC MASS SPECi-RUM, MONOISOTOPIC MASS 
SPECTRUM AND RECALCULATED POLYISOTOPIC MASS SPECTRUM OF THIONYL 
CHLORIDE 

MUSS Monoisotopic Monoisotopic 
formula intensity 

Recalculated 
polyisotopic 
intensity 

Experimental 
polyisotopic 
intensity 

83 SOCI 97.74 97.70 97.7 
84 0.82 0.9 
85 36.19 36.3 
86 0.27 0.3 
87 1.49 1.5 
88 0.0 0.0 
89 0.0 0.0 

118 SOCl, 9.80 9.79 9.8 
119 0.08 0.3” 
120 6.80 6.8 
121 0.05 0.0 
122 1.32 1.3 

.123 0.01 0.0 
124 0.05 0.0 
125 0.0. 0.0 
126 0.0 0.3” 
RMD 0.06 

_a Impurities suspected. 
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POLY 

Fig. 1. The polyisotopic and monoisotopic mass spectrum of tetramethyllead. _ 

c 

Hg(CH& 

MONO 

_. rcH’ Hg(CH3) ,; 

POLY 

232 

Fig 2 The polyisotopic mass spectrum and monoisotopic mass spectrum of dimethylmercury. 

one formula may be included ifneeded. When negative monoisotopic intensities occur, 
they may. be eliminated by removing the formulas of the peaks in question. 

Some sources of error and limitations have been described previously1*2. It is 
well to recall that some polyisotopic spectra cannot be resolved into monoisotopic 
spectra by any method. This occurs whenever there are more ions present than there 
are measurements to establish their abundance. This is found most frequently in the 
mass analysis of a mixture, although it may also occur with a single complex com- 
pound. In the latter case, however, it is always possible to resolve the spectrum in the 
region near the parent peak. 

A listing of the program in Fortran IV can be obtained from the author (RWR). 
Arrangements canbe made through the author to obtain copies of the source deck 
from the-Fordharn Umversity Computing Center. The program will also.be filed with 
the American Society for Mass Spectrometry. 



Mass.~ Monoisotdpic fifonoisotOpic R&kuhed . . -Experimentul 
fOnnu1~ intensity polyisotopic polyisotopic 

intensity intensity 

98 SiCl, 6.94 6.90 6.8 
99 0.35 0.4 

100 4.71 4.8 
101 023 0.4 
102 0.87 0.9 
103 0.04 0.1 
104 .- 0.02 0.0 
133 SiCl, 100.00 99.46 loo.0 
134 5.07 5.2 
135 100.00 99.2 
136 423 5.0 
133 34.56 33.6 
138 1.60 1.6 
139 4.43 4.3 

140 0.17 0.2 
141 0.11 0.1 
168 SiCl, 41.09 40.87 41.3 
169. - 
170 
171 
172 
173 
174 
175 
176 
177 
178 

RMD 0.17 

2.08 2.1 
54.33 54.0 

2.70 2.7 
27.51 27.3 

1.31 1.3 
6.42 6.3 
0.28 0.3 
0.64 0.6 
0.02 0.1 
0.02 0.1 
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